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What is the Epsilon Calculus?

Formalization of logic without quantifiers but with the
ε-operator.

If A(x) is a formula, then εxA(x) is an ε-term.

Intuitively, εxA(x) is an indefinite description:
εxA(x) is some x for which A(x) is true.

ε can replace ∃: ∃xA(x)a A(εxA(x))
Axioms of ε-calculus:

ñ Propositional tautologies
ñ (Equality schemata)
ñ A(t)→ A(εxA(x))

Predicate logic can be embedded in ε-calculus.
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Why Should You Care?

Epsilon calculus is of significant historical interest.
ñ Origins of proof theory
ñ Hilbert’s Program

Alternative basis for fruitful proof-theoretic research.
ñ Epsilon Theorems and Herbrand’s Theorem: proof theory without

sequents
ñ Epsilon Substitution Method: yields functionals, e.g.,

` ∀x∃y A(x,y)� ∀n : ` A(n, f(n))

Interesting Logical Formalism
ñ Trade logical structure for term structure.
ñ Suitable for proof formalization.

Other Applications:
ñ Applications in linguistics (choice functions, anaphora).
ñ Connections to Fine’s “arbitrary object” theory.
ñ Propositions-as-types for dynamic linking.
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Epsilon Substitution and Epsilon Theorems

Two approaches to consistency proofs in the ε-calculus:

1 Epsilon Substitution: For every epsilon term εxA(x), find a
numerical substitution; i.e., interpret εs as particular numbers.

ñ Specific to arithmetical theories.
ñ Developed by Ackermann (1924, 1940), von Neumann (1927)

2 Epsilon Theorems: Eliminate epsilon terms “directly” from a
proof using proof transformations.

ñ Can be applied to any quantifier-free theory.
ñ Difficult to extend to arithmetic (induction).
ñ Epsilon theorems have other applications as well (e.g., Herbrand’s

theorem)
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The Epsilon Calculus: Syntax

∧, ∨, →, …

If A(x) is a formula then ∀xA(x) and ∃xA(x) are formulas.

If A(x) is a formula, then εxA(x) is a term.

An ε-term p ≡ εxA(x;y1, . . . , yn) is the ε-type of an ε-term e if
ñ the yi are all immediate subterms,
ñ every yi has exactly one occurrence, and
ñ e ≡ εxA(x; t1, . . . , tn).

Every ε-term a substitution instance of an ε-matrix.
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Extensional Semantics

Interpretation: M = 〈D,Φ, s〉
ñ D ≠∅ is the domain
ñ M : interpretation of function and predicate symbols
ñ s : Var → D: variable assignment
ñ Φ an extensional choice function

Extensional choice function:

Φ(S) ∈ S if S ≠∅

Valuation of ε-terms εxA(x)

valM,Φ,s(εxA(x)) = Φ(x̂[A(x)]M,Φ,s)

where x̂[A(x)]M,Φ,s = {d ∈ D : M,Φ, s[d/x] î A(x)}.
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Intensional Semantics

Interpretation: M = 〈D,Φ, s〉
ñ D ≠∅ is the domain
ñ M : interpretation of function and predicate symbols
ñ s : Var → D: variable assignment
ñ Ψ an intensional choice function

Intensional choice function:

Ψ(S,p,d1, . . . , dn) ∈ S if S ≠∅

Valuation of ε-terms εxA(x) = p(t1, . . . , tn) with type
p = εxA′(x;y1, . . . , yn):

εxA(x)M = Φ(x̂[A(x)]M,Ψ ,s , p, tM1 , . . . , tMn )
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Axiomatisation of the Epsilon Calculus

EC (axioms of the elementary calculus): all propositional
tautologies

ECε (the pure epsilon calculus): add to EC all substitution
instances of

A(t)→ A(εxA(x)) . (1)

An axiom of the form (1) is called a critical formula.

PC (the predicate calculus), PCε (extended predicate calculus): EC
and ECε, respectively, together with all instances of
A(t)→ ∃xA(x) and ∀xA(x)→ A(t) in the respective language.
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Completeness

Elementary calculus/extended predicate calculus complete for
intensional semantics

ECε with identity axioms plus ε-identity schema

t = u→ εxA(x; s1 . . . t . . . sn) = εxA(x; s1 . . . u . . . sn)

complete for intensional semantics including =
ECε with identity, ε-identity, and ε-extensionality schema

∀x(A(x)↔ B(x))→ εxA(x) = εxB(x)

complete for extensional semantics.
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Embedding PC in ECε

Map ε of expressions in L(PCε) to expressions in L(ECε) as follows:

xε = x
P(t1, . . . , tn)ε = P(tε1, . . . , tεn)
(¬A)ε = ¬Aε

(A∨ B)ε = Aε ∨ Bε

(A∧ B)ε = Aε ∧ Bε

(A→ B)ε = Aε → Bε

(εxA(x))ε = εx A(x)ε

(∃xA(x))ε = Aε(εxA(x)ε)
(∀xA(x))ε = Aε(εx¬A(x)ε)
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The Embedding Lemma

Aε is of the form:

[A(t)→ ∃xA(x)]ε ≡ Aε(tε)→ Aε(εxA(x)ε) ,

which is a critical formula.

Aε is of the form:

[∀xA(x)→ A(t)]ε ≡ Aε(εx¬A(x))→ Aε(tε)

This is the contrapositive of, and hence provable from, the
critical formula

¬Aε(tε)→ ¬Aε(εx¬A(x))

Richard Zach Epsilon Calculus ICLA 2017 12 / 39



Introduction Classical Logic Subclassical Logics Proof Theory Conclusion

The First Epsilon Theorem

First Epsilon Theorem

If A is a formula without bound variables (no quantifiers, no epsilons)
and PCε ` A then EC ` A.

Extended First Epsilon Theorem

If ∃x1 . . .∃xnA(x1, . . . , xn) is a purely existential formula containing
only the bound variables x1, …, xn, and

PCε ` ∃x1 . . .∃xnA(x1, . . . , xn),

then there are terms tij such that

EC `
∨
i
A(ti1, . . . , tin).
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Herbrand Theorem

Herbrand Theorem for ∃1

If ∃x1 . . .∃xnA(x1, . . . , xn) is a purely existential formula

PC ` ∃x1 . . .∃xnA(x1, . . . , xn),

then there are terms tij such that

EC `
∨
i
A(ti1, . . . , tin).

From the last formula, the original formula can be proved in PC.

Can be extended to prenex formulas (by “Herbrandization”)

Can be extended to all formulas, since PC proves every formula
equivalent to prenex form.
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Extended First Epsilon Theorem

Extended First Epsilon Theorem

Suppose E(e1, . . . , em) is a quantifier-free formula containing only the
ε-terms e1, …, em, and

ECε `π E(e1, . . . , em) ,

then there are ε-free terms tij such that

EC `
n∨
i=1

E(ti1, . . . , t
i
m)

where n ≤ 22..
.23·cc(π)}

stack of 3 · cc(π) 2’s.
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Superintuitionistic Logics

In classical logic, ∃ and ∀ are interdefinable

Not true in subclassical logics such as intuitionistic logic

Epsilon operator seems intuitively related to choice, so
intuitionistically suspect

So: what happens when ε added to a superintuitionistic logic?
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Interdefinability of ∀ and ∃

In classical logic:

¬∃x¬A(x)↔ ∀xA(x)
¬¬A(εx¬A(x))↔ A(εx¬A(x))

→ fails in intuitionistic logic
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Solution: ε and τ

Introduce dual operator τ : τxA(x)
Critical formulas now:

A(t)→ A(εxA(x)) and

A(τxA(x))→ A(t)

ετ-translation just like ε-translation, except for:

∃xA(x)a A(εxA(x))
∀xA(x)a A(τxA(x))
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Effect of ετ on Propositional Level

In classical logic, addition of ε is conservative.

Question: Does addition of ε and τ to superintuitionistic logic
have effect on theorems?

Results by Bell and DeVidi suggest yes: under certain
assumptions, even excluded middle A∨¬A becomes provable.

However, these results rely on presence of = and need axioms.

What about pure logic?
ñ No effect on propositional level.
ñ All quantifier shifts become provable.
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ετ Conservative for Propositional Logic

Conservativity of ετ
If A1, . . . , An `Lετ B, then As1, . . . , Asn ` Bs , provided

removing quantfiers results in propositional theorems

A→ A is provable
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Quantifier Shifts

(∀∨) ∀x(A∨ B)→ (∀xA∨ B)
(A(τx(A∨ B))∨ B)→ (A(τxA)∨ B)

(→)∃ (B → ∃xA)→ ∃x(B → A)
(B → A(εxA))→ (B → A(εx(B → A)))

∃(→) (∀xA→ B)→ ∃x(A→ B)
(A(τxA)→ B)→ (A(εx(A→ B))→ B)

In each case, x is not free in B.
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Epsilon Theorem in Subclassical Logics

In intuitionistic and Gödel logics, there are no (usual) prenex
normal forms

However, in intuitionistic and Gödel ετ-calculi, all quantifier
shifts are provable, so every formula is equivalent to a prenex
formula

Provability of
ñ “Herbrand form” from prenex formula, and
ñ of prenex formula from Herbrand disjunction

require only weak assumptions on the logic (true in intuitionistic
and Gödel logic)

Question: extended epsilon theorem true in intuitionistic and
Gödel ετ-calculi?
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No Herbrand Theorem in Subclassical ετ-Logics

Theorem

Suppose Lετ has the extended first epsilon theorem, `L A→ A, and in
L, ∨ is provably commutative, associative, and idempotent, and has
weakening (A→ (A∨ B)). Then

L ` (A1 → A2)∨ . . .∨ (Ak → Ak+1)

for some k.

Corollary

Intuitionistic and Gödel ετ-calculi do not have the extended first
epsilon theorem.
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Summary of Results

Adding ε (and τ) to intuitionistic and intermediate logics has
ñ no effect on propositional level
ñ results in all quantifier shifts becoming provable

Epsilon elimination is much more problematic than in classical
logic

ñ Logics where forking sentences are all invalid (i.e., all logics with
frames of unbounded size) cannot have extended epsilon theorem

ñ This includes in particular intuitionistic and (infinite-valued)
Gödel ετ-logics

ñ In ετ-logics of k-valued Gödel logics, epsilon theorem holds

Richard Zach Epsilon Calculus ICLA 2017 24 / 39



Introduction Classical Logic Subclassical Logics Proof Theory Conclusion

A One-sided Sequent Calculus

Axiom: A,¬A
Rules:

Γ , A Γ , B
Γ , A∧ B ∧R

Γ ,¬A,¬B
Γ ,¬(A∧ B) ∧L

Γ , A
Γ ,¬¬A ¬¬

Γ , A, B
Γ , A∨ B ∨R

Γ ,¬A Γ ,¬B
Γ ,¬(A∨ B) ∨L

Π, A Λ,¬A
Π,Λ cut

Γ , A(t)
Γ ,∃xA(x) ∃R

Γ ,¬A(x)
Γ ,¬∃xA(x) ∃L

Γ , A(x)
Γ ,∀xA(x) ∀R

Γ ,¬A(t)
Γ ,¬∀xA(x) ∀L
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Leisenring’s Sequent Calculus

Γ , A(t)
Γ ,∃xA(x) ∃R

Γ ,¬A(εxA(x))
Γ ,¬∃xA(x) ∃L

Γ , A(εx¬A(x))
Γ ,∀xA(x) ∀R Γ ,¬A(t)

Γ ,¬∀xA(x) ∀L

No eigenvariable conditions!
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Completeness: Deriving Critical Formulas

Derives everything ECε derives:

¬A(t),A(t)
¬A(t),∃xA(x) ∃R

¬A(εxA(x)),A(εxA(x))
¬∃xA(x),A(εxA(x)) ∃L

¬A(t),A(εxA(x))
cut

Obviously has no cut-free proof

Hence, Leisenring’s system not cut-free complete
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Maehara’s Sequent Calculus

Axioms: ¬A,A ¬A(t),A(εxA(x))
Complete, since additional axioms allow derivation of critical
formulas.

However, not cut-free complete.
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Maehara’s System Not Cut-free Complete

Converse of critical formulas derivable:

¬¬A(t),¬A(εx¬A(x)) ¬A(t),A(t)
¬A(εx¬A(x)),A(t)

cut

But obviously no cut-free proof
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The Mints-Yasuhara System

Additional rule:

Γ ,∆(εxA(x)),¬A(εxA(x)) Γ , A(t)
Γ ,∆(εxA(x))

ε1

∆(εxA(x)) must be not empty.

Derives critical formulas:

A(εxA(x)),¬A(εxA(x))
¬A(t)︸ ︷︷ ︸

Γ

, A(εxA(x))︸ ︷︷ ︸
∆

,¬A(εxA(x))
w ¬A(t)︸ ︷︷ ︸

Γ

, A(t)

¬A(t),A(εxA(x))
ε1
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Gentzen-style Cut Elimination

Main induction on cut length, i.e., height of tree above uppermost
cut.

Induction step: permute cut upward.

For instance, replace proof ending in cut

.... D
Π, A

.... D
′

¬A,Λ, B(t)
¬A,Λ,∃x B(x) ∃R

Π,Λ,∃x B(x) cut
by

.... D
Π, A

.... D
′

¬A,Λ, B(t)
Π,Λ, B(t) cut

Π,Λ,∃x B(x) ∃R
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Gentzen-style Cut Elimination in the M-Y system

Permute cut across ε1 rule:

.... D
Π, A

.... D
′

¬A, Γ ,∆(εxB(x)),¬B(εxB(x))

.... D
′′

Γ , B(t)
¬A, Γ ,∆(εxB(x))

ε1

Π, Γ ,∆(εxB(x))
cut

replace with

.... D
Π, A

.... D
′

¬A, Γ ,∆(εxB(x)),¬B(εxB(x))
Π, Γ ,∆(εxB(x)),¬B(εxB(x))

cut

.... D
′′

Γ , B(t)
Π, Γ ,∆(εxB(x))

ε1

Condition on ε1 is violated if ¬A is ∆.
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Gentzen-style Cut Elimination in the M-Y system

Permute cut across ε1 rule:

.... D
Π, A(εxB(x))

.... D
′

¬A(εxB(x)), Γ ,¬B(εxB(x))

.... D
′′

Γ , B(t)
¬A(εxB(x)), Γ

ε1

Π, Γ cut

replace with

.... D
Π, A(εxB(x))

.... D
′

¬A(εxB(x)), Γ ,¬B(εxB(x))
Π, Γ ,¬B(εxB(x))

cut

.... D
′′

Γ , B(t)
Π, Γ

ε1

Condition on ε1 is violated.
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Schütte-Tait Style Cut Elimination

Main induction on cut rank, i.e., complexity of cut formula.

Induction step: reduce complexity of cut formula.

For instance, if proof ends in

.... D
Π,¬(A∧ B)

.... D
′

Λ, A∧ B
Π,Λ cut

replace with
.... D1

Π,¬A,¬B

.... D
′
1

Λ, A
Π,Λ,¬B cut

.... D
′
2

Λ, B
Π,Λ cut
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Schütte-Tait Style Cut Elimination: Inversion Lemma

Requires inversion lemma.

Typical case: If D′ ` Π, A∧ B then there is a D′1 ` Π, A of cut
rank and length ≤ that of D′.
Proof idea: Replace all ancestors of A∧ B in D′ by A and fix rules
that get broken.

For instance, replace

....
Γ , A

....
Γ , B

Γ , A ∧R
by

....
Γ , A
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Schütte-Tait Style Cut Elimination in the M-Y System

Consider derivation D′ which contains ε1 rule:

....
Π, A∧ B(εxC(x)),¬C(εxC(x))

....
Π, C(t)

Π, A∧ B(εxC(x)
ε1

(A∧ B(εxC(x)) is ∆(εxC(x))).
Inversion lemma produces

....
Π, A,¬C(εxC(x))

....
Π, C(t)

Π, A
ε1

No longer satisfies condition of ε1.
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Semantics

Choice functions

Intensional semantics complete for Hilbert’s original system

Other semantics possible (Blass & Gurevich, Gratzl)

Linguistic interest, arbitrary objects

Further work:
ñ Generic consequence
ñ Semantics for intutionistic systems
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Proof Theory

Epsilon theorem alternative proof theoretic approach

Herbrand complexity depending ony on critical count

However:
ñ Does not work in intuitionistic logic
ñ Does not (yet) combine well with sequent systems

Further work:
ñ Find nice sequent system or prove cut elimination for M-Y
ñ Investigate Meyer Viol’s natural deduction systems
ñ Intuitionistic systems
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