Automata, Logic and Games for the Lambda Calculus
Recent Developments in Higher-Order Model Checking

Luke Ong
University of Oxford

ICLA 2017, Kanpur IIT

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 1/29

Model checking is an approach to verification that promises accurate
analysis with push-button automation.

2007 ACM Turing Award (Clarke, Emerson and Sifakis) “for their role in
developing model checking into a highly effective verification technology,
widely adopted in hardware and software industries”.

What is Model Checking?

Problem: Given a system Sys (e.g. an OS) and a correctness property
Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The Model Checking Approach:
© Find an abstract (e.g. finite-state) model M of the system Sys.
@ Describe the property Spec as a formula ¢ of a decidable logic.

© Exhaustively check if ¢ is violated by M.

In recent years, there has been extensive research in the model checking of
higher-order computation.
Haskell, F#, C+-+11, Java8, JavaScript, Scala, Perl5, Python, etc.

T O O M Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 2 /29

Outline

Higher-Order Model Checking is the model checking of infinite structures,
such as trees, that are defined by recursion schemes (equivalently
Y -calculus).

@ Higher-Order Recursion Schemes (HORS) as Grammars of Infinite
Trees, and the MSO Model Checking Problem

© Decidability, Expressivity and Automata Characterisations

© Compositional Higher-Order Model Checking, and Model Checking of
Higher-Type Bohm Trees

@ Some Open Problems and Conclusions

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 3/29

Simple Types (Church JSL 1940)

Types A == o | (A— B)
o0 is the type of ranked trees.

Order of a type: measures “nestedness” on LHS of —.
order(o) := 0
order(A — B) := max(order(A) + 1,order(B))
Examples

O N — Nand N— (N — N) both have order 1;
@ (N — N) — N has order 2.

Notation e: A means “expression e has type A".

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 5/29

Higher-Order Recursion Schemes (HORS)

(Park 68, de Roever 72, Nivat 72, Nivat-Courcelle 78, Damm 82, ...)
HORS are grammars for trees (and tree languages).

Fix a ranked alphabet X (i.e. a set of tree constructors).

Order-n recursion schemes over Y = programs of the order-n fragment of
simply-typed A-calculus + recursion + order-1 symbols from X.

Concretely, a HORS is a finite set of simply-typed functions, defined by
mutual recursion over 3, with a distinguished start function S : o.

Example (order 1). ¥ ={f:2,g:1, a:0}.

) S — Fa
v {Fx L fr(F(gw))

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 6 /29

Example (order 1)

Y={f:2,9:1,a:0}.

S — Fa f

— fa(F(ga)) / N\

= fa(f(ga)(F(g(ga)))) a f

_> o .. / \

g f
The tree generated, [G], is the abstract syntax (‘1 g/ N\ s
tree underlying fa (f (9a) (f (9(9a))(---))). |
Many ways of defining [G] (as least fixpoint, g
least solution, initial algebra semantics, etc.). |
a

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 7 /29

A Problem in Verification

E.g. Consider properties of nodes of [G]: f
@ ¢ = “Infinitely many f-nodes are reachable”. a/ \f
@ 1) = “Only finitely many G-nodes are reachable”. yd \f
Every node of the tree satisfies ¢ V 1. Z g/ N f
Monadic second-order logic (MSO) is an expressive v
logic that can describe properties such as ¢ V 1. i
a

MSO Model-Checking Problem for Trees generated by HORS
@ INSTANCE: An order-n recursion scheme G, and an MSO formula ¢
@ QUESTION: Does the ¥-labelled tree [G] satisfy ¢?

QUESTION: Is the above problem decidable?

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 9 /29

Some Infinite Structures with Decidable MSO Theories

@ Rabin 1969: Regular trees.

“Mother of all decidability results in Verification”

@ Muller and Schupp 1985: Configuration graphs of pushdown
automata.

e Knapik, Niwiriski and Urzyczyn (TLCAO01, FoSSaCS02):
PushdownTree, > = Trees generated by order-n pushdown
automata.

SafeRecSchTree, X = Trees generated by order-n safe rec. schemes.

@ Subsuming all the above:
Caucal (MFCS02). CaucalTree, X and CaucalGraph,X.

Theorem (KNU-Caucal 2002)

For n > 0, PushdownTree, > = SafeRecSchTree,, > = CaucalTree, >
have decidable MSO theories.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 10 / 29

What is the Safety Constraint on Recursion Schemes / \-Calculus?

There is a “weaker” hierarchy of finite types: safe types (Damm 82)
dyp := {ranked trees} di 1 = U d; x - xd; — dj

k>0 v

Parameters of safe types have non-increasing order. E.g.

)\F)\f)\mfx : dy — (dl — (do — do)) - d3 safe
AEXz Af.fz : dy— (dg — (di — dp)) € d3 unsafe

Safe A-Terms (KNOO1; Blum & O. LMCS 2009)

© Safety — a syntactic constraint: no order-k subterm can contain free
variables of order < k.

@ Substitution (hence S-reduction) in “safe A-calculus” can be
implemented without renaming bound variables: variable capture is
guaranteed never to happen! Hence no need for fresh names.

Knapik et al. exploits this algorithmic advantage of safety in MSO-decidability
Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 11 /29

A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types C Simple Types

Safe Types (Damm TCS 82)

di+1 = Ukzo dz X oo X dz — dz]

k
Safey: awkward constraint but yields
elegant and strong algorithmic results

Simple Types (Church JSL 40)

k:=o0 | k=K

Natural, clean and standard, in seman-
tics and in programming

(Inaba & Maneth 08)

MSO model checking of safe recursion ?
scheme is decidable (KNU 02)

Order-n safe RS = order-n pushdown ?
automata (Damm 82, KNU 02)

Hierarchy is strict ?
(Damm 82)

Word languages are context-sensitive 7

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking

ICLA 2017, Kanpur IIT 12 /29

A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types C Simple Types

Safe Types (Damm TCS 82)

di+1 = Ukzo dz X oo X dz — dz]

k
Safey: awkward constraint but yields
elegant and strong algorithmic result

Simple Types (Church JSL 40)

k:=o0 | k=K

Natural and standard, semantically and
in programming

MSO model checking of safe recursion
scheme is decidable (KNU 02)

Q1: Is MSO model checking of arbi-
trary recursion scheme decidable?

Order-n safe RS = order-n pushdown
automata (Damm 82, KNU 02)

Q2: Automata characteraction: Order-
n recursion schemes = 7

Q3: Expressivity: Are there inherently
unsafe languages / trees / graphs?

(Inaba & Maneth 08)

Hierarchy is strict 7
(Damm 82) ‘
Word languages are context-sensitive ?

|

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking

ICLA 2017, Kanpur IIT 13 /29

Q1. MSO Model-Checking Problem for Trees generated by HORS

Theorem (O. LICS06)

For n > 0, the alternating parity tree automaton (APT) model-checking
problem for order-n recursion schemes is n-EXPTIME complete. Hence
the MSO model checking problem is decidable.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 14 /29

Recall: A Standard Automata-Logic-Games Correspondence

On trees: L, = MSOL

APT L,

N S

Parity Games

e Mu-Calculus (L,) and Alternating Parity Automata (APT) are
effectively equi-expressive for tree languages [Emerson & Jutla, FoCS

01]

e L, (Mu-Calculus) Model Checking Problem and PARITY are
inter-reducible [Streett and Emerson, Info & Comp 1989]

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 15 /29

Q1. MSO Model-Checking Problem for Trees generated by HORS

Theorem (O. LICS06)

For n > 0, the alternating parity tree automaton (APT) model-checking
problem for order-n recursion schemes is n-EXPTIME complete. Hence
the MSO model checking problem is decidable.

[Rabin, Emerson & Jutla, etc.: APT equi-expressive with MSO over trees]
Proof Idea. By game semantics. Two key ingredients:
APT B has accepting run-tree over generated tree [G]
<= { I. Traversal-Path Correspondence}
APT B has accepting traversal-tree over
tree-unfolding of G, unfold(G)
<= { Il. Simulation of traversals by paths }
transformed APT B has accepting run-tree over unfold(G)

which is decidable because unfold(G) is a regular tree.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 16 / 29

Various Proofs of the MSO Decidability Result

© Game semantics and traversals (O. LICS06)
- Variable profiles

@ Collapsible pushdown automata (Hague, Murawski, O. & Serre
LICS08)
- Priority-aware automata & equi-expressivity theorem

© Type-theoretic characterisation of APT (Kobayashi & O. LICS09)
- Intersection types

© Krivine machine (Salvati & Walukiewicz ICALP11)
- Residuals

A common pattern
@ Decision problem equivalent to solving an infinite parity game.
@ Simulate the infinite parity game by a finite parity game.

© Key ingredient of the finite games: respectively variable profiles /
automaton control-states / intersection types / residuals.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 17 /29

Summary: A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types C Simple Types

Safe Types (Damm TCS 82) Types (Church JSL 40)
dii1 = Upsqldi x - xdj = dj] k:=o0 | k=K

k
MSO model checking of safe RS is de- | Q1: MSO model checking of recursion

cidable [KNU FoSSaCS02] schemes is decidable [O. LICSO06]
Order-n safe RS = order-n PDA Q2: Order-n RS = order-n CPDA
[KNU TLCAO01] [Hague, Murawski, O. & Serre LICS08]

Q3a: Inherently unsafe trees exist.
[Parys LICS12]

Q3b: Inherently unsafe graphs exist.
[Hague, Murawski, O. & Serre LICSO08]

Hierarchy is strict [Damm TCS82] Hierarchy is strict [Kartzow & Parys
STACS12]

Word languages are context-sensitive | Order-3 unsafe languages are context-

[Inaba & Maneth FSTTCS08] sensitive (Kobayashi et al. FoSSaCS14)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 18 /29

Compositional Higher-Order Model Checking? ... Several Obstacles

@ Like standard model checking, higher-order model checking is a whole
program analysis. This can seem surprising: higher order is supposed
to aid modular structuring of programs!

@ Hitherto HOMC is about computation trees of ground-type functional
programs.

Aim: Model check the computation trees of higher-type functional
programs (= Bohm trees i.e. trees with binders).

© Seek: a denotational model to support compositional model
checking, which should be strategy aware (i.e. modelling Bohm trees,
and witnesses of correctness properties of Bohm trees), and
organisable into a cartesian closed category of parity games.

@ Unfortunately the elegant theorems of “Rabin’s Heaven” fail in the
world of Bohm trees.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 20 /29

Example Bohm Tree (“Semi-infinite Grid”): u

Uso Uses infinitely many variable names, _Aa
and each variable occurs infinitely often. R
Uso has an undecidable MSO theory (Salvati; x / \M
Clairambault & Murawski FSTTCS13). ‘1 T ’
a i Zb
Uoso IS NY-definable of order 4: Lo / AN
&7‘1:" : b
| o yd \A
a T T
Uoo = BT(M) where '*-_\3 '
xg
sl
F'E YOS z7%b(zy) (f(zy)))a : (o—0)—o0 m‘l
a

M

with'=a:0,b:0— ((0 = 0) = 0) = 0.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 21 /29

An expressive yet decidable logic for higher-type Bohm trees?

Take property ¢ := _ Az
“There are only finitely many occurrences ””l
of bound variables in each branch." AN

T o - AT2
Questions: | Al‘;
1. Is there an expressive “logic” ¢ / N
that can describe properties such as ®7? T2 > Ai‘c?)
2. Is such a logic decidable for Bohm trees? I‘l b\
Approach: c‘n :és/ A4
1. Fix a semantics (satisfaction relation), ‘ ‘
I' =U : 7, for Bohm trees U and formulas 7 %2 -
2. Develop decidable proof system x‘l
for ' M : 7, and aim for “completeness”: (\1

'FM:7 <= I'E=EBT(M):7

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 22 /29

Compositional Model Checking of Bohm Trees (Tsukada & O. LICS 2014)

Type-Checking Game
=U:T
means “Verifier has a winning strategy in the game that checks Bohm tree

U has type 7"

Types 7 (Kobayashi & O. LICS09) are parameterised by base types), and
a winning condition (E,F,Q), which is an algebraic abstraction of the
w-regular winning conditions:

prime types T = q|a—>T
intersection types o == A,.;(7,€;)

where g €) (base types), e; € E (effect set), and [is a finite indexing set.

E.g. Alternating parity tree automaton yields a winning condition
(E,T,Q), whereby @) are automaton states, and E are priorities.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 23 /29

Intuition

Regard automaton states as the base types i.e. types of trees

@ ¢ is the type of trees accepted by the automaton from state ¢

@ ¢q1 A qo is the type of trees accepted from both ¢; and ¢

@ 7 — q is the type of functions that take a tree of type 7 and return a
tree of type ¢

A tree function described by (gq1,m1) A (g2, m2) — ¢.

The least priority in d The least priority in this
this path (including path (including the root
the root and ¢,) is m, node and g,) is m,

(The above is a tree context of a run-tree, not the generated tree.)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 24 /29

Inference System for Type-Checking Game: I'F M : 7

Read ' M : 7 as “In T, BT(M) has type 7"
(Below: 5 of 7 rules)

0=0; & € =ge; forsome i where I'(x) = \,c; (6;,¢€:)
I'kFaxz:0

r'-M:7—60 T’THFN:7 DLox:rHM:0
THFMN:0 'tXeM:7—0

I'<T T-M:0 6=<6 EBT(Y):0
"= M:o r=Y:6

Theorem (Transfer)
For all \Y -terms M and types7: T'FM : 7 <—= I' =EBT(M) : 7 J

I' = M : 7 is decidable: syntax-directed rules reduce the problem to solving
parity games, = BT(Y) : 7, which is decidable.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 25 /29

New Automata-Logic-Games Correspondence for Higher-type Bohm Trees J

@ Type-checking Games [This talk]
@ Alternating Dependency Tree Automata (ADTA)
© Higher-type Mu-calculus (L)

Bohm Trees: ADTA L?

/
\

Type-Checking Games

n

(Ranked) Trees: APT L,

/
AN

Parity Games

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT

26 / 29

Some Open Problems

@ Equivalence of Recursion Schemes asks whether two given recursion
schemes generate the same tree. (Recursively equivalent to Bohm
Tree Equivalence of AY-terms.)

Is the problem decidable?

@ The Nondeterministic Safety Conjecture: there is a word language
recognisable by a nondeterministic n-CPDA, but not by any
nondeterministic HOPDA.

False for n = 2; open for n > 3.

© Are Unsafe Word Languages Context Sensitive?.
Problem open for 4th order or higher.

@ Computing Downward Closures of Tree Languages of the Recursion
Schemes Hierarchy.

© Extensions of Higher-Order Model Checking

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 28 /29

Numerous Topics Not Covered

@ Design and Implementation of Practical Higher-Order Model
Checking Algorithms

@ Effective Denotational Models of / for Higher-Order Model Checking
© Many Applications
Q etc.

Conclusions

@ HORS are a robust and highly expressive grammar for infinite
structures. They have rich algorithmic properties.

@ Recent progress in the theory have used semantic methods (game
samantics and types) as well as the more standard automata-theoretic
techniques.

@ We have developed a compositional approach to model check
higher-type Bohm trees, guided and justified by a new CCC of
w-regular games.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 29 /29

	Higher-Order Recursion Schemes (HORS) as Grammars of Infinite Trees, and the MSO Model Checking Problem
	Decidability, Expressivity and Automata Characterisations
	Compositional Higher-Order Model Checking, and Model Checking of Higher-Type Böhm Trees
	Some Open Problems and Conclusions

