
Automata, Logic and Games for the Lambda Calculus
Recent Developments in Higher-Order Model Checking

Luke Ong

University of Oxford

ICLA 2017, Kanpur IIT

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 1 / 29



Model checking is an approach to verification that promises accurate
analysis with push-button automation.

2007 ACM Turing Award (Clarke, Emerson and Sifakis) “for their rôle in
developing model checking into a highly effective verification technology,
widely adopted in hardware and software industries”.

What is Model Checking?

Problem: Given a system Sys (e.g. an OS) and a correctness property
Spec (e.g. deadlock freedom), does Sys satisfy Spec?

The Model Checking Approach:

1 Find an abstract (e.g. finite-state) model M of the system Sys.

2 Describe the property Spec as a formula ϕ of a decidable logic.

3 Exhaustively check if ϕ is violated by M .

In recent years, there has been extensive research in the model checking of
higher-order computation.
Haskell, F#, C++11, Java8, JavaScript, Scala, Perl5, Python, etc.
Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 2 / 29



Outline

Higher-Order Model Checking is the model checking of infinite structures,
such as trees, that are defined by recursion schemes (equivalently
λY-calculus).

1 Higher-Order Recursion Schemes (HORS) as Grammars of Infinite
Trees, and the MSO Model Checking Problem

2 Decidability, Expressivity and Automata Characterisations

3 Compositional Higher-Order Model Checking, and Model Checking of
Higher-Type Böhm Trees

4 Some Open Problems and Conclusions

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 3 / 29



Simple Types (Church JSL 1940)

Types A ::= o | (A→ B)

o is the type of ranked trees.

Order of a type: measures “nestedness” on LHS of →.

order(o) := 0
order(A→ B) := max(order(A) + 1, order(B))

Examples

1 N→ N and N→ (N→ N) both have order 1;

2 (N→ N)→ N has order 2.

Notation e : A means “expression e has type A”.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 5 / 29



Higher-Order Recursion Schemes (HORS)

(Park 68, de Roever 72, Nivat 72, Nivat-Courcelle 78, Damm 82, . . . )

HORS are grammars for trees (and tree languages).

Fix a ranked alphabet Σ (i.e. a set of tree constructors).

Order-n recursion schemes over Σ = programs of the order-n fragment of
simply-typed λ-calculus + recursion + order-1 symbols from Σ.

Concretely, a HORS is a finite set of simply-typed functions, defined by
mutual recursion over Σ, with a distinguished start function S : o.

Example (order 1). Σ = { f : 2, g : 1, a : 0 }.

G :

{
S → F a

F x → f x (F (g x))

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 6 / 29



Example (order 1)

Σ = { f : 2, g : 1, a : 0 }.

G :

{
S → F a

F x → f x (F (g x))

f

a f

g f

a g f

g
...

a

S → F a
→ f a (F (g a))
→ f a (f (g a) (F (g (g a))))
→ · · ·

The tree generated, [[G ]], is the abstract syntax
tree underlying f a (f (g a) (f (g (g a))(· · · ))).

Many ways of defining [[G ]] (as least fixpoint,
least solution, initial algebra semantics, etc.).

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 7 / 29



A Problem in Verification

f

�� ��
a f

�� ��
g

��
f

�� ��
a g

��

f

g

��

...

a

E.g. Consider properties of nodes of [[G ]]:

ϕ = “Infinitely many f -nodes are reachable”.

ψ = “Only finitely many G-nodes are reachable”.

Every node of the tree satisfies ϕ ∨ ψ.

Monadic second-order logic (MSO) is an expressive
logic that can describe properties such as ϕ ∨ ψ.

MSO Model-Checking Problem for Trees generated by HORS

INSTANCE: An order-n recursion scheme G, and an MSO formula ϕ

QUESTION: Does the Σ-labelled tree [[G ]] satisfy ϕ?

QUESTION: Is the above problem decidable?

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 9 / 29



Some Infinite Structures with Decidable MSO Theories

Rabin 1969: Regular trees.
“Mother of all decidability results in Verification”

Muller and Schupp 1985: Configuration graphs of pushdown
automata.

Knapik, Niwiński and Urzyczyn (TLCA01, FoSSaCS02):
PushdownTreenΣ = Trees generated by order-n pushdown
automata.
SafeRecSchTreenΣ = Trees generated by order-n safe rec. schemes.

Subsuming all the above:
Caucal (MFCS02). CaucalTreenΣ and CaucalGraphnΣ.

Theorem (KNU-Caucal 2002)

For n ≥ 0, PushdownTreenΣ = SafeRecSchTreenΣ = CaucalTreenΣ
have decidable MSO theories.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 10 / 29



What is the Safety Constraint on Recursion Schemes / λ-Calculus?

There is a “weaker” hierarchy of finite types: safe types (Damm 82)

d0 := { ranked trees } di+1 :=
⋃
k≥0

[di × · · · × di︸ ︷︷ ︸
k

→ di]

Parameters of safe types have non-increasing order. E.g.

λF.λf.λx.f x : d2 → (d1 → (d0 → d0)) ⊆ d3 safe
λF.λx.λf.f x : d2 → (d0 → (d1 → d0)) 6⊆ d3 unsafe

Safe λ-Terms (KNO01; Blum & O. LMCS 2009)

1 Safety – a syntactic constraint: no order-k subterm can contain free
variables of order < k.

2 Substitution (hence β-reduction) in “safe λ-calculus” can be
implemented without renaming bound variables: variable capture is
guaranteed never to happen! Hence no need for fresh names.

Knapik et al. exploits this algorithmic advantage of safety in MSO-decidability

proof.Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 11 / 29



A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types ⊂ Simple Types

Safe Types (Damm TCS 82) Simple Types (Church JSL 40)

di+1 :=
⋃

k≥0[di × · · · × di︸ ︷︷ ︸
k

→ di] κ := o | κ→ κ′

Safey: awkward constraint but yields
elegant and strong algorithmic results

Natural, clean and standard, in seman-
tics and in programming

MSO model checking of safe recursion
scheme is decidable (KNU 02)

?

Order-n safe RS ≡ order-n pushdown
automata (Damm 82, KNU 02)

?

Hierarchy is strict ?

(Damm 82)

Word languages are context-sensitive ?

(Inaba & Maneth 08)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 12 / 29



A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types ⊂ Simple Types

Safe Types (Damm TCS 82) Simple Types (Church JSL 40)

di+1 :=
⋃

k≥0[di × · · · × di︸ ︷︷ ︸
k

→ di] κ := o | κ→ κ′

Safey: awkward constraint but yields
elegant and strong algorithmic result

Natural and standard, semantically and
in programming

MSO model checking of safe recursion
scheme is decidable (KNU 02)

Q1: Is MSO model checking of arbi-
trary recursion scheme decidable?

Order-n safe RS ≡ order-n pushdown
automata (Damm 82, KNU 02)

Q2: Automata characteraction: Order-
n recursion schemes ≡ ?

Q3: Expressivity: Are there inherently
unsafe languages / trees / graphs?

Hierarchy is strict ?

(Damm 82)

Word languages are context-sensitive ?

(Inaba & Maneth 08)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 13 / 29



Q1. MSO Model-Checking Problem for Trees generated by HORS

Theorem (O. LICS06)

For n ≥ 0, the alternating parity tree automaton (APT) model-checking
problem for order-n recursion schemes is n-EXPTIME complete. Hence
the MSO model checking problem is decidable.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 14 / 29



Recall: A Standard Automata-Logic-Games Correspondence

On trees: Lµ ≡ MSOL

APT Lµ

Parity Games

Mu-Calculus (Lµ) and Alternating Parity Automata (APT) are
effectively equi-expressive for tree languages [Emerson & Jutla, FoCS
91]

Lµ (Mu-Calculus) Model Checking Problem and Parity are
inter-reducible [Streett and Emerson, Info & Comp 1989]

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 15 / 29



Q1. MSO Model-Checking Problem for Trees generated by HORS

Theorem (O. LICS06)

For n ≥ 0, the alternating parity tree automaton (APT) model-checking
problem for order-n recursion schemes is n-EXPTIME complete. Hence
the MSO model checking problem is decidable.

[Rabin, Emerson & Jutla, etc.: APT equi-expressive with MSO over trees]

Proof Idea. By game semantics. Two key ingredients:

APT B has accepting run-tree over generated tree [[G ]]

⇐⇒ { I. Traversal-Path Correspondence}
APT B has accepting traversal-tree over

tree-unfolding of G, unfold(G)

⇐⇒ { II. Simulation of traversals by paths }
transformed APT B̂ has accepting run-tree over unfold(G)

which is decidable because unfold(G) is a regular tree.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 16 / 29



Various Proofs of the MSO Decidability Result

1 Game semantics and traversals (O. LICS06)
- Variable profiles

2 Collapsible pushdown automata (Hague, Murawski, O. & Serre
LICS08)
- Priority-aware automata & equi-expressivity theorem

3 Type-theoretic characterisation of APT (Kobayashi & O. LICS09)
- Intersection types

4 Krivine machine (Salvati & Walukiewicz ICALP11)
- Residuals

A common pattern

1 Decision problem equivalent to solving an infinite parity game.

2 Simulate the infinite parity game by a finite parity game.

3 Key ingredient of the finite games: respectively variable profiles /
automaton control-states / intersection types / residuals.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 17 / 29



Summary: A Tale of Two Hierarchies of Finite Types

Syntactically, Safe Types ⊂ Simple Types

Safe Types (Damm TCS 82) Types (Church JSL 40)

di+1 :=
⋃

k≥1[di × · · · × di︸ ︷︷ ︸
k

→ di] κ := o | κ→ κ′

MSO model checking of safe RS is de-
cidable [KNU FoSSaCS02]

Q1: MSO model checking of recursion
schemes is decidable [O. LICS06]

Order-n safe RS ≡ order-n PDA Q2: Order-n RS ≡ order-n CPDA

[KNU TLCA01] [Hague, Murawski, O. & Serre LICS08]

Q3a: Inherently unsafe trees exist.

[Parys LICS12]

Q3b: Inherently unsafe graphs exist.

[Hague, Murawski, O. & Serre LICS08]

Hierarchy is strict [Damm TCS82] Hierarchy is strict [Kartzow & Parys
STACS12]

Word languages are context-sensitive
[Inaba & Maneth FSTTCS08]

Order-3 unsafe languages are context-
sensitive (Kobayashi et al. FoSSaCS14)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 18 / 29



Compositional Higher-Order Model Checking? ... Several Obstacles

1 Like standard model checking, higher-order model checking is a whole
program analysis. This can seem surprising: higher order is supposed
to aid modular structuring of programs!

2 Hitherto HOMC is about computation trees of ground-type functional
programs.
Aim: Model check the computation trees of higher-type functional
programs (= Böhm trees i.e. trees with binders).

3 Seek: a denotational model to support compositional model
checking, which should be strategy aware (i.e. modelling Böhm trees,
and witnesses of correctness properties of Böhm trees), and
organisable into a cartesian closed category of parity games.

4 Unfortunately the elegant theorems of “Rabin’s Heaven” fail in the
world of Böhm trees.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 20 / 29



Example Böhm Tree (“Semi-infinite Grid”): u∞

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

HH

x1

MM

a

u∞ uses infinitely many variable names,
and each variable occurs infinitely often.

u∞ has an undecidable MSO theory (Salvati;
Clairambault & Murawski FSTTCS13).

u∞ is λY-definable of order 4:

u∞ = BT(M) where

Γ ` Y (λf.λyo.λxo→o.b (x y) (f (x y))) a︸ ︷︷ ︸
M

: (o→ o)→ o

with Γ = a : o, b : o→ ((o→ o)→ o)→ o.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 21 / 29



An expressive yet decidable logic for higher-type Böhm trees?

λx1

b

x1

66

λx2

a b

x2

55

λx3

x1

HH

b

a x3

66

λx4

x2

II

...

x1

MM

a

Take property Φ :=
“There are only finitely many occurrences
of bound variables in each branch.”

Questions:

1. Is there an expressive “logic”
that can describe properties such as Φ?

2. Is such a logic decidable for Böhm trees?

Approach:

1. Fix a semantics (satisfaction relation),
Γ |= U : τ , for Böhm trees U and formulas τ

2. Develop decidable proof system
for Γ `M : τ , and aim for “completeness”:

Γ `M : τ ⇐⇒ Γ |= BT(M) : τ

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 22 / 29



Compositional Model Checking of Böhm Trees (Tsukada & O. LICS 2014)

Type-Checking Game
|= U : τ

means “Verifier has a winning strategy in the game that checks Böhm tree
U has type τ”

Types τ (Kobayashi & O. LICS09) are parameterised by base types Q, and
a winning condition (E,F,Ω), which is an algebraic abstraction of the
ω-regular winning conditions:

prime types τ ::= q | α→ τ

intersection types α ::=
∧
i∈I(τi, ei)

where q ∈ Q (base types), ei ∈ E (effect set), and I is a finite indexing set.

E.g. Alternating parity tree automaton yields a winning condition
(E,F,Ω), whereby Q are automaton states, and E are priorities.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 23 / 29



Intuition

Regard automaton states as the base types i.e. types of trees

q is the type of trees accepted by the automaton from state q

q1 ∧ q2 is the type of trees accepted from both q1 and q2
τ → q is the type of functions that take a tree of type τ and return a
tree of type q

A tree function described by (q1,m1) ∧ (q2,m2)→ q.

(The above is a tree context of a run-tree, not the generated tree.)

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 24 / 29



Inference System for Type-Checking Game: Γ `M : τ

Read Γ `M : τ as “In Γ, BT(M) has type τ”

(Below: 5 of 7 rules)

θ = θi & ε �E ei for some i where Γ(x) =
∧
i∈I (θi, ei)

Γ ` x : θ

Γ `M : τ → θ Γ ` N : τ
Γ `M N : θ

Γ, x : τ `M : θ

Γ ` λx.M : τ → θ

Γ′ � Γ Γ `M : θ θ � θ′
Γ′ `M : θ′

� BT(Y) : θ

Γ ` Y : θ

Theorem (Transfer)

For all λY-terms M and types τ : Γ `M : τ ⇐⇒ Γ |= BT(M) : τ

Γ `M : τ is decidable: syntax-directed rules reduce the problem to solving
parity games, |= BT(Y) : τ , which is decidable.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 25 / 29



New Automata-Logic-Games Correspondence for Higher-type Böhm Trees

1 Type-checking Games [This talk]

2 Alternating Dependency Tree Automata (ADTA)

3 Higher-type Mu-calculus (L→µ )

Böhm Trees: ADTA

∩

L→µ

∩

Type-Checking Games

∩

(Ranked) Trees: APT Lµ

Parity Games

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 26 / 29



Some Open Problems

1 Equivalence of Recursion Schemes asks whether two given recursion
schemes generate the same tree. (Recursively equivalent to Böhm
Tree Equivalence of λY-terms.)
Is the problem decidable?

2 The Nondeterministic Safety Conjecture: there is a word language
recognisable by a nondeterministic n-CPDA, but not by any
nondeterministic HOPDA.
False for n = 2; open for n ≥ 3.

3 Are Unsafe Word Languages Context Sensitive?.
Problem open for 4th order or higher.

4 Computing Downward Closures of Tree Languages of the Recursion
Schemes Hierarchy.

5 Extensions of Higher-Order Model Checking

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 28 / 29



Numerous Topics Not Covered

1 Design and Implementation of Practical Higher-Order Model
Checking Algorithms

2 Effective Denotational Models of / for Higher-Order Model Checking

3 Many Applications

4 etc.

Conclusions

HORS are a robust and highly expressive grammar for infinite
structures. They have rich algorithmic properties.

Recent progress in the theory have used semantic methods (game
samantics and types) as well as the more standard automata-theoretic
techniques.

We have developed a compositional approach to model check
higher-type Böhm trees, guided and justified by a new CCC of
ω-regular games.

Luke Ong (University of Oxford) Compositional Higher-Order Model Checking ICLA 2017, Kanpur IIT 29 / 29


	Higher-Order Recursion Schemes (HORS) as Grammars of Infinite Trees, and the MSO Model Checking Problem
	Decidability, Expressivity and Automata Characterisations
	Compositional Higher-Order Model Checking, and Model Checking of Higher-Type Böhm Trees
	Some Open Problems and Conclusions

